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Using the concepts of the thermodynamics of irreversible processes, the temperature dependence of the 
thermodynamic functions of glass-forming systems is investigated. A simple model is used to extrapolate 
the temperature dependence of the specific heat, of the thermodynamic potential and of the other 
thermodynamic functions of fictive undercooled melts below the glass transition temperature T r Expressions 
are derived for the dependence of Tg on cooling rate and thus for the change of thermodynamic functions 
of glasses vitrified at different cooling rates. Particular attention is given to the problem of maximum 
deviation from equilibrium in vitrified systems. 
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INTRODUCTION 

Glasses and polymer glasses in particular are non- 
equilibrium systems. Their thermodynamic treatment 
requires a special approach--the introduction of frozen- 
in parameters of state. This is usually done in the 
framework of the thermodynamics of irreversible pro- 
cesses and by employing de Donder's concepts 1 of time- 
and temperature-dependent reaction coordinates ~i. The 
details concerning this approach are described elsewhere 2'3. 
Its particular application to different aspects of the vitri- 
fication processes has been given in references 4-8. 

In order to describe the structure or more generally 
the degree of order in a simple or polymer melt, a different 
number of reaction coordinates or parameters ¢i can be 
used depending on the desired accuracy of description 
and on the complexity of the particular model used. 

Besides one or more parameters portraying the 
topological order in the system, we have in general to 
introduce reaction coordinates connected with the 
possibility of chemical or molecular changes in the melt 
(e.g. temperature-dependent degree of polymerization, 
change of molecular composition, etc.) or corresponding 
to different states of mobility of its building units 
(e.g. rigidity or flexibility of chain-folding polymers). 
Experience obtained in recent years with more or 
less realistic lattice-hole models of vitrifying polymer 
melts 9-1a shows that in general three structural para- 
meters are necessary to describe with sufficient accuracy 
the thermodynamic state of a simple or polymer 
glass-forming melt: one for the topological order (i.e. for 
the free volume of the system), one for the complexity of 
its building units (e.g. the degree of polymerization) and 
one for the probability of the system to exist in different 
conformations, which is determined by its flexibility. The 
use of more than one structural parameter is also a 
necessity in order to obtain a proper value for the 
so-called Prigogine-Defay ratio (see ref. 2 and analysis 
on this subject given in ref. 14). 

* To whom correspondence should be addressed 

In the present contribution we restrict our discussion 
to only one structural reaction parameter ~, assuming, 
however, that it describes in some generalized way all 
the essential structural features and the whole configura- 
tional part of the partition function of a vitrifying melt. 
Let us also assume that ~ is defined in such a way that 
it varies from zero (complete configurational order) to 
unity (complete configurational disorder). 

In this way a simple description of the metastable 
undercooled melt as well as of the frozen-in system (the 
glass) is possible and analytical expressions for the 
dependence of its thermodynamic properties on the 
cooling rate are easily achieved. A comparison with 
existing experimental evidence gives the possibility to 
determine the necessary constants appearing in the 
derived formulae. 

STRUCTURAL PARAMETERS AND 
THERMODYNAMIC FUNCTIONS 

In the framework of de Donder's method it is assumed 
that at equilibrium the structural parameter ~ is a 
single-valued function of state and that for every system 
with constant composition it is determined only by the 
temperature T (at constant pressure p), i.e.: 

¢ = ~(T)p (1) 

In a similar way, at equilibrium every thermodynamic 
function ;( (the enthalpy H, the entropy S, the thermo- 
dynamic potential G) of the melt (denoted by the 
subscript f) can be written in the form: 

Xf = z(T, {)p = z(T), (2) 

i.e. it turns out that at equilibrium Z depends only on T. 
The equilibrium value of ~ is determined from the 
condition for the minimum of the thermodynamic 
potential of the melt: 

)p,T=0 \ /p,>0 (3) 
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However, when the state of the melt is abruptly 
changed (e.g. by very fast cooling) its structure (i.e. 4) 
cannot follow the alteration of the temperature. In such 
cases at lower temperatures the melt remains 'frozen-in' 
in a state of order or disorder: 

~=~(7,) (la) 

corresponding to the initial temperature 7,. For the 
non-equilibrium state thus obtained: 

3Gf(T, ¢)~ 
-/ , ,r¢O (4a) 

and as long as for the frozen-in system ~ does not change 
with time t we have: 

de d~ 

The thermodynamic functions of the vitrified melt (i.e. 
the glass, denoted by the index g) become: 

Zg = Z( T, ~)v (5/ 

i.e. they depend on the additional parameter ~ and 
through it on the temperature 7, (the so-called Tool's 
temperatureXS), corresponding to the frozen-in structure 
of the melt. 

In reality the freezing-in process of the melt takes place 
in a broad temperature interval. However, following 
Simon 16 we can assume that at temperatures T>  T s the 
undercooled melt behaves as a metastable system in 
internal equilibrium while for T < Tg the melt is frozen-in 
to a glass. In the framework of such a simplified treatment 
it holds that 7" = Tg, where Tg is the conventional glass 
transition temperature. 

In considering the thermodynamic properties of 
crystals (denoted in the following by the index c) we 
assume ~ = const = 0. 

Using the notations given with equation (2) the total 
differential of any thermodynamic function X of the melt 
becomes (at p = const): 

d~(f=(t~Zf) dT+(OZf) de 
\i~r/p,¢ \ Oe f T, p 

Taking into account that for the crystal ~ = O, the second 
term in the analogous expression for dz~ is zero. 

Recalling that the definition of the specific heat of a 
system reads: 

Cv = (dH/d T)p 

and accounting for the above considerations we have: 

(~Hf~ /OHf~ d~ 
+ - -  - -  (6a) Cv'f=k OT /n.¢ ~ c~ )r,vdr 

for the melt and: 

(OH¢~ (6b) C~,o=\ yr-/,,¢ 
for the crystal. The last equation defines in fact the 
crystal-like (phonon) part of the specific heat of our 
system (Cv,c-~ Cv,ph) (undercooled melt, glass or crystal) 
while the configurational part is given by the second term 
of equation (6a): 

Cp . . . .  fig(T) = \ ~ - ] r , p  ~ (7) 

Thus we have: 

Cp,f(T) = Cv,ph(T) + Cn,¢o.ng(T ) ~ Cp,¢(T) + ACn(T) (8) 

where ACv(T ) - Cp,config(r ). 
Using well known formulae all thermodynamic func- 

tions of the melt can be obtained from the ACv 
dependence by integration. With equation (8) the 
thermodynamic functions of the melt split into two parts: 

Zf(T) = gf,ph(T) + Zf ....  fig(T) ~- z,(T) + Ax(T) (9a) 

which correspond to the phonon and to the configura- 
tional part of the partition function of the system. In the 
following the notation: 

Az(T) = Zf . . . .  fig(T) = Z(~) (9b) 

will be used. 
The difference between the thermal expansion coeffi- 

cients of the melt and of the crystal Aft can be defined as: 

Afl=I (dAV(T)~ ~_(dO(T)~ (10) 
V\ dT J r - \  dT Jv 

Here AV(T)= Vf(T)- Vc(T) and accounting for the fact 
that this difference gives approximately the relative free 
volume 0 of our system (i.e. assuming that A V/V ~-O) it is 
evident that equation (10) determines the temperature 
coefficient of the relative free volume of the melt. 
Applying a similar approach to that used for AC v the 
configurational part of Aft can be written in the form: 

Aflconfig=(rqO(T) "] d~  (11) 
\ gq~ fT,p d r  

Upon vitrification it holds that: 

(d~T) = (d~T~T) 0= (12) 
p T<~-- p 

For temperatures T <  Tg from equations (7) and (11) it 
follows that: 

Cn,config(T ) = ACv(T)= 0 (12a) 

and 

Aflconfig(T) ~- 0 

Considering equations (5) and (9) it is evident that 
upon vitrification the configurational part of any 
thermodynamic function is frozen in: 

a x ( ~ ) l  T < ~" = a x ( ~ )  = axg ( 1 3 )  

With equation (la) the above relation shows that the 
dependence of Agg on the cooling rate q (where q = dT/dt) 
can be constructed in every case where the Ax(T) function 
of the undercooled melt in internal equilibrium is known 
for a known relation between the freezing-in temperature 
7, (or Tg) and q. 

The construction of this Axg(q) dependence is the main 
aim of the present contribution. It follows from equation 
(9) that the phonon part of the thermodynamic functions 
does not depend on q. Thus at temperature T the 
thermodynamic functions of any glass obtained under 
different cooling rates can be written in the form: 

zg(r) = Xg,ph(T) + Azg(q) (14) 

where the approximation Zg,ph(T)___z¢(T) can be used. 
Particular attention in this respect is given to the course 
of the AS(T) function, as it is directly connected with 
the configurational structure of the vitrifying system. 
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Moreover, as shown in one of the following paragraphs, 
AS(T) also determines the rheological properties of the 
melt and thus the Tg vs. q dependence. 

The temperature course of the configurational part of 
the thermodynamic potential AG(T) is also considered 
in detail, as it gives the most general measure for the 
non-stability of the vitrified frozen-in melt. 

In constructing the thermodynamic functions of 
undercooled melts below Tg (i.e. for the fictive under- 
cooled melt) we either have to use results obtained with 
more or less complicated statistical models or we have 
to extrapolate AZ to T-+0, relying on some suitable 
thermodynamic approximation. Such an approximation 
is introduced in the following. 

A SIMPLE THERMODYNAMIC MODEL 

The simplest temperature dependence of ACv(T ) of 
an undercooled melt leading to Ax(T) functions, 
corresponding to the general requirements ~7-~9 of the 
thermodynamics of two coexisting phases in internal 
equilibrium, is: 

ACp(T) _ ~const=ao l>x>~x o 
(15) 

AS m [0 x o > x > 0 

Here AS m is the entropy of melting. The possibilities and 
limitation of this ACv(T ) function are discussed in detail 
in refs. 11 and 20. Accounting for this approximation 
and using well known thermodynamic relations, the 
following set of equations can be easily derived: 

AS(T)_{~+ao lnx  (16a) 

ASm 

AH(T) _ (1 -ao(1  - x )  
(16b) 

A S m T  m ( 1 - a o ( 1 - X o )  

AG(T) _ ~(1 - ao)(1 - x ) - a o x l n x  
(16c) 

A S m T  m ~(1 - ao)(1 -Xo) -aoxolnx  o 

where ASmTm = A H  m is the enthalpy of melting and x is 
the reduced temperature, i.e. the actual temperature 
divided by the temperature of melting Tm (i.e. x = T/Tm, 
xg= T~/Tm, etc.). The limits of validity of the top and 
bottom lines in equations (16) are the same as in equation 
(15). In the above approximations the ratio ACv(Tm)/AS m 
= ACp(Tg)/AS m =a  o is a material constant depending on 
the structure and on the individual characteristics of the 
system. The value of x o can be determined from the 
condition AS(To)=0 as being: 

x o = To/T m = e x p ( -  1/ao) (17) 

In one of the following paragraphs it is shown that 
experimentally determined ao values are within limits 
from 1 to 2. For ao =1.0, 1.5 and 2.0, equation (17) 
gives Xo=0.37, 0.51 and 0.6, respectively. A schematic 
representation of the temperature dependences following 
from equations (15) and (16) is shown in Figure 1. 

Approximating the logarithmic function in equations 
(16) as lnx~-x - 1, equation (16c) can also be written in 
the form: 

(An(T) 
/ASmTm (1 - x )  1 >x>~x o 

--_~,AG(T) ~ (18a) 

ASmTm }AH(T)( I_xo)  Xo>X>0 
[,aSm rm 

where AH(T)/ASmT m is given by equation (16b). It is also 
evident from equations (16a) and (16b) that in the 
framework of this approximation: 

AS(T) AH(T) 
- -  "~ - -  1 > x >~ x o  (18b) 

AS m A S m T  m 

In a similar way (see equation (15)) the temperature 
dependence of the thermal expansion coefficient can be 
approximated with a broken function, e.g. as: 

Af t={ ;  °nst =f°  Xo>X>O 1 >x~>xo (19) 

Thus the temperature dependence of the relative free 
volume of the melt can be written in the form: 

O(T)={fo°Tm(x-x°) (20a) 

The above dependence is also illustrated in Figure ld. In 
drawing this diagram it has been assumed that Xo is 
determined by the condition 0(To)=0 and 0(Tin)=0.37. 
The second assumption follows from the hole theory of 
liquids 11,20. In the framework of the first assumption the 
constant in equation (19) turns out to be: 

0(Tm) 1 
fo - (20b) 

(1--X0) T m 

The second assumption specifies the value of fo to 
foTm-~ 0.75. 

The simple approximation indicated with equations 
(15) is quite common for the temperature dependence of 
ACp for a great number of simple and polymer 
glass-forming substances, as demonstrated by experimental 
AC v data. An example in this respect is the case of glycerol 
(Figure 2) according to the classical measurements of 
Giauque 2a and Simon 16. The temperature dependences 
AH, AS and AG for glycerol can be constructed from the 
ACp(T) curve given in Figure 2 as done by Simon 16"22 
many years ago. The calculated temperature functions 
correspond exactly to the drawings given in Fioure 1. 

In other cases where an increasing or decreasing 
ACp(T) course is observed in the Tm-Tg region (see the 
examples discussed in ref. 12) the approximation 
hCp(T)-~const can be introduced as a mean value for 
the temperature range TIn-To assuming that: 

AS(T)= f ~  ~ ACv(T) 

-~ fT Èm ACv(T)dT~ACv(Tg ) I rm d T 
0 T Jr0 T 

The right-hand side of the above equation, which is only 
valid for ACv=const , gives directly equation (17). The 
structural significance of different ACp(T) dependences 
has already been discussed in the framework of existing 
lattice- hole models of simple and polymer melts t 1,17.23 

KINETICS OF VITRIFICATION 

The kinetics of the vitrification process is determined by 
the Frenkel-Kobeco 24-26 relation, which connects q and 
7" (or q and Tg): 

qz(T)l r ~ ~ --- const = Co (21 ) 

Here z(T) is the molecular relaxation time of the melt 
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Figure 1 Temperature dependence of the configurational part of the thermodynamic functions at a o = 1.5 according to equations (15) and (16): 
(a) specific heats; (b) entropy; (c) free energy and enthalpy; (d) relative free volume. Full bold lines, undercooled melt; broken bold lines, fictive 
undercooled melt below Tg; chain bold lines, vitrified melt 

rm 
~-~240 Tg l 

! ' 16C ~ ~ . . . .  

~ 8o j 
I i t l  

0 100 200 300 
T,K 

Figure 2 The temperature dependence of the specific heats of glycerol. 
Open circles: from T,, to Tg, undercooled melt; below T., vitrified melt. 

211 1 6 Full triangles: crystal; experimental data after Giauque and Simon . 
T O is calculated according to equation (17) 

and the constant c o is assumed to be nearly equal to 
unity 26. Equation (21) follows from very general con- 
siderations. Its derivation has been given by Volkenstein 
and Ptizyn 27 in the framework of a kinetic model of 
vitrification with two energetic levels. 

Different temperature functions can be used in order 
to describe the temperature dependence of the relaxation 
time of a vitrifying melt. Usually the temperature course 
of z(T) is presented in terms of an Arrhenius dependence: 

z = zoexp (UR(~)) (22) 

where z o is the time of eigenvibrations of the building 
units of the melt. For z o a nearly constant value equal 
to  10-12-10-13S can be expected for simple and 
polymer melts. Assuming U ( T ) =  Uo--Const and intro- 
ducing equation (22) into equation (21), the well known 
Bartenev-Ritland equation 2°'24 follows: 

1/Tg = ca - c 2  log q (23) 

where c 1 = c2 log(co~To) and c2 = 2.3R/Uo. Experimental 
data reported by Bartenev 26 give Co ~- 5 K for practically 
all glass-forming systems. Thus log(co/Zo)~-12-13 can 
be accepted as a possible estimate. 

The applicability of equation (22) with Uo=const  is 
restricted only to small temperature intervals. We prefer 
here another expression for the temperature dependence 
of the molecular relaxation time which can be applied 
to the whole temperature interval from Tm to Tg (ref. 28). 
According to ref. 28 the relation connecting z(T) and the 
configurational entropy AS(T) of the melt reads: 

//BoASm~ 
z = z  o exp t ~ ) )  (24) 

This equation follows readily from Doolitle's formula: 

, 4a, 

connecting T (or the viscosity tl) with the relative free 
volume O(T) of the melt. In terms of the mean-field 
approximation (m.f.a.) of lattice-hole models of liquids 
the dependence of AS(T) on 0 can be written to give: 
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A S ( T ) = -  R ( l ~ 0 1 n  0 + l n ( 1 - 0 ) )  (25) 

For 0 values that are of interest here (that is to say from 
O(To) = 0 to 0(T=)= 0.37 where according to equation (25) 
AS(T)~-R which in m.f.a, models corresponds to the 
melting point) equation (22) can be approximated 2° by 
AS(T)~-3RO. 

Following such a derivation, which has been made by 
Gutzow in 197529 (more recently a similar result has also 
been obtained by Ramachandrarao et al.3°), equation 
(24) is readily obtained from equation (24a). The 
similarity (but also the difference) of equation (24) and an 
expression due to Adams and Gibbs al is also obvious. 

In terms of Doolitle's equation the factor in equation 
(24) is a constant B o = 3bo. It depends on the nature and 
the complexity of the building units of the melt. For 
simple (non-associated melts) bo~-1 is to be expected. 
The activation energy U(T) in equations (22)-(24) is 
given by the relation: 

U(T) = 2.3R d(log ~) 1 (26) 
d(1/r) - B°AC'(T)RT AS2(T) 

Combining equations (21) and (24) and expressing AS(T) 
by equation (16a) (for Tg values higher than To) we have: 

In Xg = - (l/ao)z (27a) 

where 

1 
z=[1-3b°(log(co/z-o)-logq)12.3 (27b) 

As long as it can be taken that ln xg~-xg -1  and if 
(1-ao)<<aoxg equation (27) can be written to give in 
analogy to the Bartenev-Ritland equation: 

Tm/Tg "~ c'1 - -  c'2 log q (23a) 

where, however, c~ = 2.3ao/3bo and c'1 = c'2 log(co/to). The 
xg vs. q dependence according to equation (27) is 
illustrated in Figure 3 for different ao and b o values and 
for the already mentioned value of log(co/to). 

Equation (27) indicates that to every q value there 
corresponds a different r(T~) value. However, if vitrifica- 
tion is performed under standardized conditions (e.g. at 
cooling rates q = 10 ° to 102 K s- 1, as used in the case of 
typical glass-formers) the molecular relaxation time 
should have a nearly constant value (for the mentioned 
standard cooling rates z(Tg)---102 s). Accounting for 
equation (17) we can write equation (27) in the form: 

x~ = [exp(-  1/ao)] = = x~ (28a) 

From equations (27) and (28) it is obvious that z can be 
determined from the slope of the log(Tg/Tm) vs. AS~/A% 
dependence and that the factor b o can be evaluated 
according to: 

2.3 1 b o = ~ ( - z ) [ l o g ( : : ) - l o g  q] (28b) 

It is also evident that two structural parameters appear 
in equation (28): a thermodynamic one (ao) determining 
the temperature dependence of the configurational part 
of the thermodynamic function (cf. equations (15) and 
(16)) and a kinetic one (b0) determined by the rheological 
behaviour of the system and by the complexity of the 
theological unit taking part in the flow process. It is 
obvious that for substances with similar structures 

xg(q) 

%=1.0 
I I I I I ,.o_ / y j  

O . 8 -  

, t I i ,.,e=l..., , ,  c 

0.13 00=2.0 

I I I I I 

- 4 0 4 13 tog q 
Figure 3 Dependence of the reduced temperature of vitrification xs(q) 
on cooling rate q according to equations (27). Different values of the 
thermodynamic parameter  a o are indicated on the right-hand side of 
each triad of curves and b o is given as a parameter on each curve. 
Shaded area: the most  probable Tg/T,. value and standard deviation 
from it for typical glass-formers (cf. Figure 8) 

(i.e. as long as a o and b 0 can be considered as having 
nearly constant values) and for standard cooling rates 
(logq~-const, cf. equations (27a) and (28)) it is to be 
expected in accordance with the Beaman-Kauzmann rule 
that: 

Tg/T m = xg ----- const ~ (29a) 

Using equation (29a) to express Tm in equations (19) and 
(20), another empirical rule proposed years ago by Boyer 
and Simha 32 (see also ref. 33) can be derived: 

0(Tm) constl 
A ~ T g -  = c o n s t  2 (29b) 

(1 -Xo) 3 

where A~=Afl/3 is the coefficient of linear thermal 
expansion. However, we have to keep in mind that the 
above rules (equations (29)) connecting the thermo- 
dynamic constants of the system (Tm, Aft) with the kinetic 
characteristics of the vitrification process are only 
applicable for glasses obtained at standardized or nearly 
equal cooling rates. 
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THERMODYNAMIC FUNCTIONS OF THE 
VITRIFIED MELT 

According to the formalism developed in the earlier 
sections, we have to expect that below the respective 
vitrification temperature the values of ACp and Aflo drop 
to zero (cf. equations (7), (11) and (12)). According to 
equation (13) for the thermodynamic functions of glass 
we have: 

AS(T)lr<7,=AS(~)=ASg=const (30a) 

AH(T)lr<7,=AH(~)=AHg=const (30b) 

A0(T)[ r < ~ = A0g = const (30c) 

By introducing equations (30a) and (30b) into the well 
known formula: 

AG(T) = AH(T)-  TAS(T) (3 I) 

the thermodynamic potential difference of the frozen-in 
melt becomes: 

AG(T)Ir< 7 ̀= An s -  TAS~ (32) 

The last dependence shows that for every glass 
irrespective of the particular value of ~ (i.e. irrespec- 
tive of the particular frozen-in temperature and the 
corresponding cooling rate) we always have to expect 
a linear increase of AG~ with falling temperature 
(dAG~/dT=-ASs). In defiance of the third law of 
thermodynamics this temperature dependence of AGg(T) 
of the frozen-in system is expected to be valid even when 
zero temperatures are approached; at T--,0 we have: 

AGg(T)IT~ o = AHg 

In order to determine the desired dependences of ASg, 
AHg and AG~ on the cooling rate q we have to introduce 
xs through equations (27) and (28) into our thermo- 
dynamic model, defined with equations (15), (16) and 
(20a). In this way we obtain the following Azg(q) 
dependences: 

AS. (q )_{~- z  (33a) 
AS., 

AHg(q) _ ~'1-ao(1 - x ~ )  
ASmT= ( 1 - a o ( 1 - X o )  

(33b) 

A0g(q)= f ~ f°Tm(xz° - Xo) (33c) 
((1 - ao)(1 -Xo) 

Proceeding in the same manner and using for AGg(T) 
the approximate expression (18a) it follows that: 

AG~(T) = ~(1 - ao)(1 - x~)(1 - x )  (34) 

ASmT m /.(1 - ao)(1 -Xo) 

The value of z and its dependence on q is defined by 
equation (27); the upper line in the above relations is 
valid in the limits 1 > x~ > Xo. At infinitely slow cooling 
rates (q--*0) according to equation (27) z ~  1 and equation 
(28) gives xg~x o and the bottom line of the correspond- 
ing equations has to be used. At log q = log(co/Zo)- 3bo/2.3 
it is expected that xg--, 1 (cf. equation (23a)). 

The maximal cooling rate that is physically permissible 
according to the discussed model is log q=log(co/Zo). 
This maximal cooling rate corresponds to the velocity of 
eigenvibrations of the building units of the melt and it 
exceeds by several orders of magnitude the possibilities 

. 1 2 

0 I, ' I - i  I,,, , 

-4 0 4 8 
log q 

12 

Figure 4 Configurational entropy of frozen-in glasses, obtained at 
different cooling rates q according to equations (27a) and (33a). Each 
curve corresponds to a distinct bo value indicated as a parameter; 
curve 1, bo=8; curve 2, bo=4; curve 3, bo=2; curve 4, bo= 1. For all 
curves log(co~%)= 13. Shaded area around dashed line is the most 
probable experimental ASg/ASm value and the deviation from this 
value(cf. Figure 10) 

even of present-day splat cooling techniques (q = l0 s to 
10SKs-1). 

The ASg(q) dependence following from equations (27b) 
and (33a) is illustrated in Figure 4 for different bo values. 
In a similar way Figure 5 gives the AHg(q) and AGg(q) 
diagrams for two a0 values according to equations (33b) 
and (34). A coincidence of the AHg(q) and AGg(q) curves 
can be expected only at q~0.  The AGg(T) curves in this 
figure are drawn defining the x value in the round 
brackets in equation (34) as x = xg(q). 

Finally Figure 6 drawn according to equation (34) 
illustrates the temperature dependence of AGg(T) for 
several glasses vitrified at different cooling rates, indi- 
cated as the respective log q value on each curve (again 
for two a0 values). In this way the influence of cooling 
rate on the possible deviation of the frozen-in system 
from equilibrium is easily demonstrated. 

It is also to be noted here that in the framework of 
the above simplified model description the influence of 
the cooling rate on ACp is manifested as a shift of the 
vertical line indicating Tg on the ACp(T) dependence (the 
chain line in Figure la). The dependence of this shift on 
q is again determined by equation (27). 

Equations (33) and (34) and Figures 4, 5 and 6 show 
that similar Ax(q) dependences are to be expected at every 
pair of ao and bo values. The nature of the rheological 
processes in glass-forming melts and especially their 
exponential temperature dependence (equations (22) and 
(24)) restricts the influence of cooling rate q on the value 
of the thermodynamic properties of glasses to the 
logarithmic function, which according to equation (27) 
determines z and in this way the value of AX. It is evident 
that only significant changes in q can measurably affect 
the structure and the thermodynamic properties of the 
frozen-in glass. This also explains the relative reproduci- 
bility of the thermodynamic characteristics and of the 
structure of glasses obtained even under seemingly 
different conditions. 

4 5 6  POLYMER, 1992, Volume 33, Number 3 



Thermodynamics of glass-forming systems." I. Gutzow and A. Dobreva 

t l  b 

1.( 

=E=E 
~ 0.6 
A 

t T " D "  

"1" L9 
,el ,el 

0.2 

0 

ao=l # I l l  ao=1.5 

- 4  0 4 8 - 4 0 4 8 12 
log q 

m 

1 

Figure 5 
thermodynamic structural factor a o = 1 and a o = 1.5, respectively. The value of b o corresponding to each curve is indicated as a parameter 

Enthalpy (upper curves) and free energy (lower curves) diagrams for two vitrifying systems according to equations (33b) and (34) with 

1.0-a o~=1 -b  o~=1.5 
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Figure 6 Possible deviations from equilibrium in two glass-forming systems (with ao = 1 and ao = 1.5) vitrified at different xg values at different 
cooling rates q according to equation (28a). Full curves: AG(T) at equilibrium. Broken lines: AGg(T) dependences according to equation (34) for 
different log q values (indicated as a parameter) 

However,  the above dependences and  Figures 3, 4 and 
5 also show that  for every structural  class of glass-forming 
melts (i.e. for every pair of ao and  bo values) there 
is a range of critical cooling rates q where an almost  
l inear dependence of the Az(q) funct ion on log q is 

observed. For  higher bo values this is the range of 
' no rma l '  cooling rates ( q=  10 ° to 102K s-1) ;  for bo ~ _ 1 
to this range corresponds the interval  of q values realized 
at the extreme condi t ions  of splat cooling experiments 
(q=  106-108 K s - i ) .  
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Figure 7 Frequency distribution histogram of experimental ACp/ASm 
values for 22 typical glass-formers (see text) vitrified at approximately 
standard cooling rates (median value 1.56); experimental data after 
refs. 12, 20 and 34-36 

The above figures show also that, at cooling rates 
below the respective critical limits, no vitrification takes 
place and even equilibrium AZ values corresponding to 
the metastable melt can be reached. 

COMPARISON WITH EXPERIMENTAL DATA 

Now we have to determine the values of the constants 
appearing in the above theoretical derivations from 
existing experimental data. The comparison with experi- 
mental evidence also gives a possibility of verifying some 
of the assumptions made. 

The values of the ratio ACp/ASm=ao for typical 
glass-forming substances are summarized in Figure 7 as 
they are given in existing critical surveys 12'2°'34--36. The 
resulting frequency distribution histogram shows that the 
most probable value of this ratio is ao = 1.56. Practically 
all simple and polymer glass-forming melts for which the 
respective calorimetric measurements have been per- 
formed are included. The substances summarized in 
Figure 7 are representatives of different types of 
glass-forming melts: oxides (SiO 2, B203), halides (BeF2, 
ZnCI 2), simple borate, silicate and phosphate glasses (e.g. 
Na2B407, Na2SiO 3, NaPOa, etc.), elementary glasses 
(Se), glass-forming organic compounds (e.g. CH3OH, 
C2HsOH, glycerol, etc.), organic acids and oxyacids as 
well as a number of more complicated aromatic organic 
substances (phenolphthalein, ct-naphthylbenzene, etc.) 
The a o values for all organic polymer glasses, as they are 
given in ref. 36, are also accounted for. 

The universal value of ACp(Tg)/ASm "~ 1.5 for typical 
glass-formers has been mentioned also by previous 
authors a4. However, it is to be noted that a closer 
examination of the existing experimental data shows that 
for another class of materials, metal glass-forming 
alloys 37 as well as halide substances 3~, ao = 1 should be 

taken as the most representative value while for organic 
high polymers ao=2  is very common a6. These repre- 
sentative values of the thermodynamic structural factor 
have been used in the already discussed Figures 4, 5 and 6. 

The Tg/Tm values for 108 substances are summarized 
in Figure 8. All substances given in Figure 7 are included 
in this figure too. The median value of the T~/Tm frequency 
distribution histogram specifies in accordance with the 
Beaman-Kauzman rule 2° the constant in equation (29) 
to constl = 0.65. 

All substances given in Figures 7 and 8 have one 
common feature: they are to be considered as typical 
glass-formers in the sense that they vitrify at 'normal' 
cooling rates. The z factor for the same substances, 
calculated according to equation (27a) with the men- 
tioned values for ao and T~/Tm, is equal to z=0.7 
(Figure 9). Using equation (28b) and the mentioned 
'normal' values of Co, Zo and q it turns out that for typical 
glass-formers bo = 2 to 3 has to be expected for the kinetic 
factor. 

With the mentioned median values of ao and TJT~, 
equation (16a) gives ASg/ASm=0.35 for the entropy, 
frozen-in at 'normal' conditions. The experimental 
AS~/ASm values summarized in Figure 10 according to 
the data given elsewhere 12'19'2°'35'36 indicate that the 
most probable value ASg/AS m = 0.37 has to be expected. 
A similar coincidence between AX, values calculated 
according to our model and experimental evidence is also 
found for the value of the frozen-in enthalpy. According 
to equation (16b) with ao=1.56 and Ts/T~=0.65 the 
value of AHg/AHm is equal to 0 .52. From 20 experimental 
determinations ~9'2° we find AHg/AHm=0.48 as a mean 
value. 

Finally let us note that the most probable value of 
ActTg (equation (29b)) is calculated to be 0.15 using the 
above-mentioned values of a0 (resp. Xo), 0(Tin) and constr  

30 

m 

2o 

Y 

0 

rg/r  
Figure 8 Frequency distribution histogram of experimental T~/Tm 
values for typical glass-forming substances vitrified at normal cooling 
rates (108 entities, median value 0.65 with standard deviation 
Act=0.08); experimental data after refs. 12, 19, and 36 
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Frequency distribution histograms of z values calculated 
from ACp(Tg)/ASm and Ts/T m (cf. Figures 7 and 8) according to equation 
(27a) (67 entities, median value z/2.303 =0.3, Aa=0.08) 

Thus the calculated value is very close to the experimental 
evidence (A~ Tg = 0.11, after Boyer and Simha 32). 

In this way the foregoing analysis and comparison with 
experimental data allows us to formulate the following 
simple rules for the most probable values of the thermo- 
dynamic functions of typical glass-forming systems 
vitrified at 'normal' conditions: 

TJTm'~2/3 To/Tm=xo ~ - 1/2 (35a) 

ACp/ASm=ao"~3/2 A~Tg- ~ 1/8 (35b) 

ASg/AS m ~ 1/3 (35c) 

AHg/AHm ~- 1/2 (35d) 

Accounting for equations (35), equation (32) can be 
written in the form: 

AGg(T) _ 1 1 
x (36) 

ASmT m 2 3 

For such substances equation (27b) transforms into (with 
bo~_2-3): 

z = l - [ 1 3 - 1 o g q ]  -1 (37) 

and in this way using equations (28), (33) and (34) the 
dependences of T,, AS,, AHg, A0g and AGg on  cooling 
rate q can be simply evaluated. 

The values given above apply only to typical glass- 
formers including organic polymers. For substances that 
vitrify only at extreme cooling rates (e.g. metallic 
alloys halides 38) the following set of rules can be 
recommended: 

Tg/Tm~ 1/2 To/Tm=xo ~- 1/3 (38a) 

ACp/ASm = ao ~- 1 A~T~-~ 1/10 (38b) 

a S g / a S  m ~ 1/3 (38C) 

AHJAHm ~- 1/2 (38d) 

for the most probable values of the thermodynamic 
functions of such substances vitrified at conditions 
'normal' for them (e.g. at q = 106-108 K s-  1; cf. Figures 4 
and 5). The above dependences follow from experi- 
mental evidence collected by Davies 4, Battezatti 37 and 
Gutzow et al. 19. Considering equations (38c, d) it is 
obvious that equation (36) can be used also for metallic 
alloy systems. In this way for metallic alloy systems we 
calculate z~-0.6 and b o ~ l  using equations (27a) and 
(28b), respectively. For the dependence ofz on q it holds: 

z = [1 - 1.5(13 - l o g  q)- 1] (39) 

The values of ao and bo obtained here for both groups 
of glass-forming substances are very reasonable. For 
more complex structures, higher a o values should be 
expected; and for metallic and halide melts, it is to be 
anticipated that only one structural unit determines the 
flow process (i.e. b0 ~- 1). 

Finally let us note that the curves drawn through the 
frequency distribution histograms (Figures 7-10) are the 
respective Gaussian curves. They give an indication of 
the extent to which the scatter in experimental values 
can be treated as a sequence of chance deviations (caused 
by different cooling rates) from a single most probable 
value. 

DISCUSSION 

Equation (36) gives the possible deviation from equi- 
librium that should be expected in a glass frozen-in under 
conditions 'normal' for its preparation. From equation 
(36) it is evident that the maximal value of AGg(T)/ASmT.m 
that can be obtained by vitrification (at T-~0) is 
approximately equal to 0 .5ASmT m. 
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0 
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Figure 10 Frequency distribution histogram of configurational 
entropy, frozen-in in typical glass-formers (see text) (79 entities with 
median value of 0.37 and a standard deviation &r =0.15; experimental 
data are taken after refs. 12, 19, 20, 35 and 36 
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The dependence  of the t h e r m o d y n a m i c  funct ions of  a 
vitrified melt  on  cool ing rate  is given by  equat ions  (33) 
and (34). In  these equa t ions  the factor  z can be eva lua ted  
as a funct ion of  the cool ing rate  using ei ther  equa t ion  
(37) for typical  glass-formers or  equa t ion  (39) for systems 
having b0 --- 1. 

I t  turns  out  that  at cool ing  rates n o r m a l  for a given 
system similar  ASg/ASm, AH~/ASmT m and  AG~/ASmT~ 
values are ob ta ined .  The limits of poss ible  devia t ions  
from these values are given by the s t anda rd  devia t ion  Aa  
of the existing exper imenta l  values (cf. the Aa values in 
Figures 7 to 10). These possible  devia t ions  are  indica ted  
by the shaded  area  in Figures 3, 4 and  5. 

The possibi l i t ies  for ob ta in ing  glasses with the rmo-  
dynamic  proper t ies  subs tan t ia l ly  different f rom those 
ob ta ined  by the usual ly  appl ied  me thods  are  evident  f rom 
equat ions  (33) and  (34) and  f rom Figures 4, 5 and  6. 
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